首頁最新資訊

全部 人工智能學(xué)科動態(tài) 人工智能技術(shù)資訊 人工智能常見問題 技術(shù)問答

    • 損失函數(shù)(loss函數(shù))有什么作用?

      在人工智能領(lǐng)域中,損失函數(shù)(loss函數(shù))是機器學(xué)習(xí)和深度學(xué)習(xí)中的一個重要組成部分。它的作用是衡量模型的預(yù)測結(jié)果與真實標簽之間的差異,即模型的預(yù)測誤差。查看全文>>

      人工智能常見問題2023-07-14 |黑馬程序員 |損失函數(shù),loss函數(shù),均方誤差損失函數(shù)
    • 有哪些領(lǐng)域使用模式識別技術(shù)?

      在人工智能領(lǐng)域中,模式識別技術(shù)被廣泛應(yīng)用于許多不同的領(lǐng)域。下面是一些常見的領(lǐng)域和使用模式識別技術(shù)的例子,以及附帶的代碼演示。查看全文>>

      人工智能常見問題2023-07-13 |黑馬程序員 |模式識別,圖像識別,語音識別
    • 過渡擬合產(chǎn)生的原因是什么?

      在人工智能領(lǐng)域中,過擬合(overfitting)是指在機器學(xué)習(xí)模型中,模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在新的、未見過的數(shù)據(jù)上表現(xiàn)不佳的現(xiàn)象。過擬合的產(chǎn)生原因可以歸結(jié)為以下幾個方面。查看全文>>

      人工智能常見問題2023-07-12 |黑馬程序員 |過渡擬合,參數(shù)數(shù)量,特征選擇
    • 神經(jīng)網(wǎng)絡(luò)參數(shù)初始化方法有哪些,適用范圍是什么?

      神經(jīng)網(wǎng)絡(luò)參數(shù)初始化方法有很多種,以下是其中幾種常用的方法及其適用范圍,參數(shù)按照均勻分布或高斯分布隨機初始化。適用于多種神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和激活函數(shù),是最常用的初始化方法之一。查看全文>>

      人工智能常見問題2023-07-11 |黑馬程序員 |神經(jīng)網(wǎng)絡(luò),隨機初始化,零初始化
    • 人工智能需要學(xué)什么?人工智能如何學(xué)習(xí)?

      人工智能是一個綜合性強的專業(yè),從了解基礎(chǔ)開始到深入學(xué)習(xí),需要學(xué)的內(nèi)容還是蠻多的。涉及Python語言,數(shù)據(jù)處理數(shù)據(jù)分析,機器學(xué)習(xí)算法、自然語言處理NLP、計算機視覺CV、數(shù)據(jù)挖掘等技術(shù)。人工智能需要學(xué)習(xí)以下的內(nèi)容:查看全文>>

      人工智能常見問題2023-07-07 |黑馬程序員 |人工智能學(xué)什么,人工智能技術(shù),人工智能培訓(xùn)
    • 零基礎(chǔ)學(xué)會人工智能需要多久?

      人工智能的學(xué)習(xí)有數(shù)學(xué)理論基礎(chǔ)的,主要學(xué)習(xí)計算機相關(guān)知識,一般學(xué)習(xí)周期需要2-3個月的時間。(面授班學(xué)習(xí)需要掌握其他種類零基礎(chǔ)的同學(xué),可能相對時間比較長)。對于計算機基礎(chǔ),主要學(xué)習(xí)人工智能技術(shù)以及相關(guān)數(shù)學(xué)理論知識的同學(xué),一般需要4-5個月,而對于真正的零基礎(chǔ)的同學(xué),單純的數(shù)學(xué)知識都需要學(xué)習(xí)很長時間,所以整個學(xué)習(xí)周期會非常的長,預(yù)計能達到6個月以上。查看全文>>

      人工智能常見問題2023-07-07 |黑馬程序員 |人工智能要學(xué)多久,人工智能培訓(xùn),人工智能學(xué)習(xí)周期
和我們在線交談!